Installation
- Only need to do once per container creation
# BiocManager::install( "MouseGastrulationData" )
Load packages
library( "MouseGastrulationData" )
library( "scran" )
library( "scater" )
Load data
sce <- EmbryoAtlasData( samples=29 )
snapshotDate(): 2020-10-27
see ?MouseGastrulationData and browseVignettes('MouseGastrulationData') for documentation
loading from cache
see ?MouseGastrulationData and browseVignettes('MouseGastrulationData') for documentation
loading from cache
see ?MouseGastrulationData and browseVignettes('MouseGastrulationData') for documentation
loading from cache
see ?MouseGastrulationData and browseVignettes('MouseGastrulationData') for documentation
loading from cache
see ?MouseGastrulationData and browseVignettes('MouseGastrulationData') for documentation
loading from cache
Normalize data
sce <- logNormCounts( sce )
Visualize expression
sce
class: SingleCellExperiment
dim: 29452 7569
metadata(0):
assays(2): counts logcounts
rownames(29452): ENSMUSG00000051951 ENSMUSG00000089699 ...
ENSMUSG00000096730 ENSMUSG00000095742
rowData names(2): ENSEMBL SYMBOL
colnames(7569): cell_95727 cell_95728 ... cell_103294 cell_103295
colData names(17): cell barcode ... colour sizeFactor
reducedDimNames(2): pca.corrected umap
altExpNames(0):
plotReducedDim( sce, dimred="umap", colour_by="ENSMUSG00000033227" )
Document software
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 8
Matrix products: default
BLAS: /home/idies/R/lib64/R/lib/libRblas.so
LAPACK: /home/idies/R/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] scater_1.18.6 ggplot2_3.3.3
[3] scran_1.18.7 MouseGastrulationData_1.4.0
[5] SingleCellExperiment_1.12.0 SummarizedExperiment_1.20.0
[7] Biobase_2.50.0 GenomicRanges_1.42.0
[9] GenomeInfoDb_1.26.7 IRanges_2.24.1
[11] S4Vectors_0.28.1 BiocGenerics_0.36.1
[13] MatrixGenerics_1.2.1 matrixStats_0.58.0
loaded via a namespace (and not attached):
[1] bitops_1.0-7 bit64_4.0.5
[3] httr_1.4.2 tools_4.0.3
[5] bslib_0.2.4 utf8_1.2.1
[7] R6_2.5.0 irlba_2.3.3
[9] vipor_0.4.5 colorspace_2.0-0
[11] DBI_1.1.1 withr_2.4.2
[13] gridExtra_2.3 tidyselect_1.1.1
[15] bit_4.0.4 curl_4.3.1
[17] compiler_4.0.3 BiocNeighbors_1.8.2
[19] DelayedArray_0.16.3 labeling_0.4.2
[21] sass_0.3.1 scales_1.1.1
[23] rappdirs_0.3.3 stringr_1.4.0
[25] digest_0.6.27 rmarkdown_2.7
[27] XVector_0.30.0 pkgconfig_2.0.3
[29] htmltools_0.5.1.1 sparseMatrixStats_1.2.1
[31] dbplyr_2.1.1 fastmap_1.1.0
[33] limma_3.46.0 rlang_0.4.10
[35] RSQLite_2.2.7 shiny_1.6.0
[37] DelayedMatrixStats_1.12.3 farver_2.1.0
[39] jquerylib_0.1.4 generics_0.1.0
[41] jsonlite_1.7.2 BiocParallel_1.24.1
[43] dplyr_1.0.7 RCurl_1.98-1.3
[45] magrittr_2.0.1 BiocSingular_1.6.0
[47] GenomeInfoDbData_1.2.4 scuttle_1.0.4
[49] Matrix_1.2-18 ggbeeswarm_0.6.0
[51] munsell_0.5.0 Rcpp_1.0.6
[53] fansi_0.4.2 viridis_0.6.1
[55] lifecycle_1.0.0 stringi_1.5.3
[57] yaml_2.2.1 edgeR_3.32.1
[59] zlibbioc_1.36.0 BiocFileCache_1.14.0
[61] AnnotationHub_2.22.1 grid_4.0.3
[63] blob_1.2.1 promises_1.2.0.1
[65] dqrng_0.2.1 ExperimentHub_1.16.1
[67] crayon_1.4.1 lattice_0.20-41
[69] cowplot_1.1.1 beachmat_2.6.4
[71] locfit_1.5-9.4 knitr_1.33
[73] pillar_1.6.0 igraph_1.2.6
[75] glue_1.4.2 BiocVersion_3.12.0
[77] evaluate_0.14 BiocManager_1.30.12
[79] vctrs_0.3.8 httpuv_1.6.0
[81] gtable_0.3.0 purrr_0.3.4
[83] assertthat_0.2.1 cachem_1.0.4
[85] xfun_0.22 rsvd_1.0.5
[87] mime_0.10 xtable_1.8-4
[89] later_1.2.0 viridisLite_0.4.0
[91] tibble_3.1.1 beeswarm_0.3.1
[93] AnnotationDbi_1.52.0 memoise_2.0.0
[95] bluster_1.0.0 statmod_1.4.35
[97] ellipsis_0.3.2 interactiveDisplayBase_1.28.0
LS0tCnRpdGxlIDogIlplcm8gdG8gTW91c2UgR2FzdHJ1bGF0aW9uIERhdGEiCmF1dGhvcjogIkNDQyBGQTIxIgpkYXRlICA6ICIxOCBPY3RvYmVyIDIwMjEiCm91dHB1dDogCiAgaHRtbF9ub3RlYm9vazoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCi0tLQoKIyBTdW1tYXJ5CgotIFB1YmxpY2F0aW9uIC0tIGh0dHBzOi8vcHVibWVkLmdvdi8zMDc4NzQzNgotIFNoaW55IC0tIGh0dHBzOi8vbWFyaW9uaWxhYi5jcnVrLmNhbS5hYy51ay9Nb3VzZUdhc3RydWxhdGlvbjIwMTgKLSBEYXRhc2V0IC0tIGh0dHBzOi8vYmlvY29uZHVjdG9yLm9yZy9wYWNrYWdlcy9Nb3VzZUdhc3RydWxhdGlvbkRhdGEKCiMgSW5zdGFsbGF0aW9uCgotIE9ubHkgbmVlZCB0byBkbyBvbmNlIHBlciBjb250YWluZXIgY3JlYXRpb24KCmBgYHtyIG1lc3NhZ2U9RkFMU0V9CiMgQmlvY01hbmFnZXI6Omluc3RhbGwoICJNb3VzZUdhc3RydWxhdGlvbkRhdGEiICkKYGBgCgojIExvYWQgcGFja2FnZXMKCmBgYHtyIG1lc3NhZ2U9RkFMU0V9CmxpYnJhcnkoICJNb3VzZUdhc3RydWxhdGlvbkRhdGEiICkKCmxpYnJhcnkoICJzY3JhbiIgKQpsaWJyYXJ5KCAic2NhdGVyIiApCmBgYAoKIyBMb2FkIGRhdGEKCmBgYHtyfQpzY2UgPC0gRW1icnlvQXRsYXNEYXRhKCBzYW1wbGVzPTI5ICkKYGBgCgojIE5vcm1hbGl6ZSBkYXRhCgpgYGB7cn0Kc2NlIDwtIGxvZ05vcm1Db3VudHMoIHNjZSApCmBgYAoKCiMgVmlzdWFsaXplIGV4cHJlc3Npb24KCi0gW05vdGNoMV0oaHR0cDovL3VzZWFzdC5lbnNlbWJsLm9yZy9NdXNfbXVzY3VsdXMvR2VuZS9TdW1tYXJ5P2c9RU5TTVVTRzAwMDAwMDI2OTIzKQoKYGBge3J9CnNjZQpgYGAKCgpgYGB7cn0KcGxvdFJlZHVjZWREaW0oIHNjZSwgZGltcmVkPSJ1bWFwIiwgY29sb3VyX2J5PSJFTlNNVVNHMDAwMDAwMzMyMjciICkKYGBgCgojIERvY3VtZW50IHNvZnR3YXJlCgo8ZGV0YWlscz4KYGBge3J9CnNlc3Npb25JbmZvKCkKYGBgCjwvZGV0YWlscz4KCgoKCg==