Load packages
library( "singleCellNet" )
Load data
Classifier trained on Tabula Muris subset
class_info <- readRDS( "/home/idies/workspace/c_moor_data/singleCellNet/class_info_TM.rds" )
Query kidney cells from Park 2018
stPark <- utils_loadObject( "/home/idies/workspace/c_moor_data/singleCellNet/sampTab_Park_MouseKidney_062118.rda" )
stPark
expPark <- utils_loadObject( "/home/idies/workspace/c_moor_data/singleCellNet/expMatrix_Park_MouseKidney_Oct_12_2018.rda" )
expPark[ 1:10, 1:3 ]
10 x 3 sparse Matrix of class "dgCMatrix"
AAACCTGAGATATGCA.1 AAACCTGGTTGTGGCC.1 AAACGGGAGCGTCTAT.1
Rp1 . . .
Sox17 . . .
Mrpl15 . . .
Lypla1 . . .
Gm37988 . . .
Tcea1 . . 1
Atp6v1h . . .
Rb1cc1 1 1 .
4732440D04Rik . . .
Pcmtd1 . 1 .
Classify
Apply to Park et al query data
nqRand = 50
crParkall<-scn_predict(class_info[['cnProc']], expPark, nrand=nqRand)
Loaded in the cnProc
All Done
Visualization
sgrp = as.vector(stPark$description1)
names(sgrp) = as.vector(stPark$sample_name)
grpRand =rep("rand", nqRand)
names(grpRand) = paste("rand_", 1:nqRand, sep='')
sgrp = append(sgrp, grpRand)
# heatmap classification result
sc_hmClass(crParkall, sgrp, max=5000, isBig=TRUE, cCol=F, font=8)
Classification annotation assignment
stPark <- get_cate(classRes = crParkall, sampTab = stPark, dLevel = "description1", sid = "sample_name", nrand = nqRand)
Error in get_cate(classRes = crParkall, sampTab = stPark, dLevel = "description1", :
could not find function "get_cate"
Classification result violin plot
sc_violinClass(sampTab = stPark, classRes = crParkall, sid = "sample_name", dLevel = "description1", addRand = nqRand)
Error in sc_violinClass(sampTab = stPark, classRes = crParkall, sid = "sample_name", :
unused argument (sid = "sample_name")
Document software
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 8
Matrix products: default
BLAS: /home/idies/R/lib64/R/lib/libRblas.so
LAPACK: /home/idies/R/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] Matrix_1.2-18 singleCellNet_0.1.0 cowplot_1.1.1
[4] reshape2_1.4.4 pheatmap_1.0.12 dplyr_1.0.7
[7] ggplot2_3.3.3
loaded via a namespace (and not attached):
[1] Rcpp_1.0.6 plyr_1.8.6 RColorBrewer_1.1-2
[4] bslib_0.2.4 compiler_4.0.3 pillar_1.6.0
[7] jquerylib_0.1.4 tools_4.0.3 digest_0.6.27
[10] lattice_0.20-41 jsonlite_1.7.2 evaluate_0.14
[13] lifecycle_1.0.0 tibble_3.1.1 gtable_0.3.0
[16] pkgconfig_2.0.3 rlang_0.4.10 rstudioapi_0.13
[19] cli_2.5.0 DBI_1.1.1 parallel_4.0.3
[22] yaml_2.2.1 xfun_0.22 withr_2.4.2
[25] stringr_1.4.0 knitr_1.33 generics_0.1.0
[28] sass_0.3.1 vctrs_0.3.8 grid_4.0.3
[31] tidyselect_1.1.1 glue_1.4.2 R6_2.5.0
[34] fansi_0.4.2 rmarkdown_2.7 farver_2.1.0
[37] purrr_0.3.4 magrittr_2.0.1 scales_1.1.1
[40] ellipsis_0.3.2 htmltools_0.5.1.1 randomForest_4.6-14
[43] assertthat_0.2.1 colorspace_2.0-0 utf8_1.2.1
[46] stringi_1.5.3 munsell_0.5.0 crayon_1.4.1
LS0tCnRpdGxlIDogInNpbmdsZUNlbGxOZXQgVmlnbmV0dGUiCmF1dGhvcjogIkNDQyBGQTIxIgpkYXRlICA6ICIxOCBPY3RvYmVyIDIwMjEiCm91dHB1dDogCiAgaHRtbF9ub3RlYm9vazoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCi0tLQoKIyBTdW1tYXJ5CgotIGh0dHBzOi8vcGNhaGFuMS5naXRodWIuaW8vc2luZ2xlQ2VsbE5ldC8KLSBodHRwczovL2dpdGh1Yi5jb20vcGNhaGFuMS9zaW5nbGVDZWxsTmV0CgojIExvYWQgcGFja2FnZXMKCmBgYHtyIG1lc3NhZ2U9RkFMU0V9CmxpYnJhcnkoICJzaW5nbGVDZWxsTmV0IiApCmBgYAoKIyBMb2FkIGRhdGEKCiMjIENsYXNzaWZpZXIgdHJhaW5lZCBvbiBUYWJ1bGEgTXVyaXMgc3Vic2V0IAoKLSBodHRwczovL3B1Ym1lZC5nb3YvMzAyODMxNDEKCmBgYHtyfQpjbGFzc19pbmZvIDwtIHJlYWRSRFMoICIvaG9tZS9pZGllcy93b3Jrc3BhY2UvY19tb29yX2RhdGEvc2luZ2xlQ2VsbE5ldC9jbGFzc19pbmZvX1RNLnJkcyIgKQpgYGAKCiMjIFF1ZXJ5IGtpZG5leSBjZWxscyBmcm9tIFBhcmsgMjAxOAoKLSBodHRwczovL3B1Ym1lZC5nb3YvMjk2MjI3MjQKCmBgYHtyfQpzdFBhcmsgPC0gdXRpbHNfbG9hZE9iamVjdCggIi9ob21lL2lkaWVzL3dvcmtzcGFjZS9jX21vb3JfZGF0YS9zaW5nbGVDZWxsTmV0L3NhbXBUYWJfUGFya19Nb3VzZUtpZG5leV8wNjIxMTgucmRhIiApCnN0UGFyawpgYGAKCmBgYHtyfQpleHBQYXJrIDwtIHV0aWxzX2xvYWRPYmplY3QoICIvaG9tZS9pZGllcy93b3Jrc3BhY2UvY19tb29yX2RhdGEvc2luZ2xlQ2VsbE5ldC9leHBNYXRyaXhfUGFya19Nb3VzZUtpZG5leV9PY3RfMTJfMjAxOC5yZGEiICkKZXhwUGFya1sgMToxMCwgMTozIF0KYGBgCgojIENsYXNzaWZ5CgojIyBBcHBseSB0byBQYXJrIGV0IGFsIHF1ZXJ5IGRhdGEKCi0gMi0zIG1pbnV0ZXMKCmBgYHtyfQpucVJhbmQgPSA1MApjclBhcmthbGw8LXNjbl9wcmVkaWN0KGNsYXNzX2luZm9bWydjblByb2MnXV0sIGV4cFBhcmssIG5yYW5kPW5xUmFuZCkKYGBgCgojIyBWaXN1YWxpemF0aW9uCgpgYGB7ciBmaWcud2lkdGg9MTV9CnNncnAgPSBhcy52ZWN0b3Ioc3RQYXJrJGRlc2NyaXB0aW9uMSkKbmFtZXMoc2dycCkgPSBhcy52ZWN0b3Ioc3RQYXJrJHNhbXBsZV9uYW1lKQpncnBSYW5kID1yZXAoInJhbmQiLCBucVJhbmQpCm5hbWVzKGdycFJhbmQpID0gcGFzdGUoInJhbmRfIiwgMTpucVJhbmQsIHNlcD0nJykKc2dycCA9IGFwcGVuZChzZ3JwLCBncnBSYW5kKQoKIyBoZWF0bWFwIGNsYXNzaWZpY2F0aW9uIHJlc3VsdApzY19obUNsYXNzKGNyUGFya2FsbCwgc2dycCwgbWF4PTUwMDAsIGlzQmlnPVRSVUUsIGNDb2w9RiwgZm9udD04KQpgYGAKCiMjIENsYXNzaWZpY2F0aW9uIGFubm90YXRpb24gYXNzaWdubWVudAoKYGBge3J9CnN0UGFyayA8LSBnZXRfY2F0ZShjbGFzc1JlcyA9IGNyUGFya2FsbCwgc2FtcFRhYiA9IHN0UGFyaywgZExldmVsID0gImRlc2NyaXB0aW9uMSIsIHNpZCA9ICJzYW1wbGVfbmFtZSIsIG5yYW5kID0gbnFSYW5kKQpgYGAKCiMjIENsYXNzaWZpY2F0aW9uIHJlc3VsdCB2aW9saW4gcGxvdAoKYGBge3J9CnNjX3Zpb2xpbkNsYXNzKHNhbXBUYWIgPSBzdFBhcmssIGNsYXNzUmVzID0gY3JQYXJrYWxsLCBzaWQgPSAic2FtcGxlX25hbWUiLCBkTGV2ZWwgPSAiZGVzY3JpcHRpb24xIiwgYWRkUmFuZCA9IG5xUmFuZCkKYGBgCgojIERvY3VtZW50IHNvZnR3YXJlCgo8ZGV0YWlscz4KYGBge3J9CnNlc3Npb25JbmZvKCkKYGBgCjwvZGV0YWlscz4KCgoKCg==